Search
Log in
  • Home

  • Categories

  • Audiobooks

  • E-books

  • For kids

  • Top lists

  • Help

  • Download app

  • Use campaign code

  • Redeem gift card

  • Try free now
  • Log in
  • Language

    🇩🇪 Deutschland

    • DE
    • EN

    🇧🇪 Belgique

    • FR
    • EN

    🇩🇰 Danmark

    • DK
    • EN

    🇪🇸 España

    • ES
    • EN

    🇫🇷 France

    • FR
    • EN

    🇳🇱 Nederland

    • NL
    • EN

    🇳🇴 Norge

    • NO
    • EN

    🇦🇹 Österreich

    • AT
    • EN

    🇨🇭 Schweiz

    • DE
    • EN

    🇫🇮 Suomi

    • FI
    • EN

    🇸🇪 Sverige

    • SE
    • EN
  1. Books
  2. Nonfiction
  3. Computer sciences

Read and listen for free for 14 days!

Cancel anytime

Try free now
0.0(0)

Practical Reinforcement Learning

Master different reinforcement learning techniques and their practical implementation using OpenAI Gym, Python and Java

About This Book

Take your machine learning skills to the next level with reinforcement learning techniques

Build automated decision-making capabilities in your systems

Cover Reinforcement Learning concepts, frameworks, algorithms, and more in detail

Who This Book Is For

Machine learning/AI practitioners, data scientists, data analysts, machine learning engineers, and developers who are looking to expand their existing knowledge to build optimized machine learning models, will find this book very useful.

What You Will Learn

Understand the basics of reinforcement learning methods, algorithms, and more, and the differences between supervised, unsupervised, and reinforcement learning

Master the Markov Decision Process math framework by building an OO-MDP Domain in Java

Learn dynamic programming principles and the implementation of Fibonacci computation in Java

Understand Python implementation of temporal difference learning

Develop Monte Carlo methods and various policies used to build a Monte Carlo simulator using Python

Understand Policy Gradient methods and policies applied in the reinforcement domain

Instill reinforcement methods in the autonomous platform using a moving car example

Apply reinforcement learning algorithms in games with REINFORCEjs

In Detail

Reinforcement learning (RL) is becoming a popular tool for constructing autonomous systems that can improve themselves with experience. We will break the RL framework into its core building blocks, and provide you with details of each element.

This book aims to strengthen your machine learning skills by acquainting you with reinforcement learning algorithms and techniques. This book is divided into three parts. The first part defines Reinforcement Learning and describes its basics. It also covers the basics of Python and Java frameworks, which we are going to use later in the book. The second part discusses learning techniques with basic algorithms such as Temporal Difference, Monte Carlo, and Policy Gradient—all with practical examples. Lastly, in the third part we apply Reinforcement Learning with the most recent and widely used algorithms via practical applications.

By the end of this book, you'll know the practical implementation of case studies and current research activities to help you advance further with Reinforcement Learning.

Style and approach

This hands-on book will further expand your machine learning skills by teaching you the different reinforcement learning algorithms and techniques using practical examples.


Author:

  • Dr. Engr. S.M. Farrukh Akhtar

Format:

  • E-book

Duration:

  • 335 pages

Language:

English

Categories:

  • Nonfiction
  • Computer sciences

Help and contact


About us

  • Our story
  • Career
  • Press
  • Accessibility
  • Partner with us
  • Investor relations
  • Instagram
  • Facebook

Explore

  • Categories
  • Audiobooks
  • E-books
  • Magazines
  • For kids
  • Top lists

Popular categories

  • Crime
  • Biographies and reportage
  • Fiction
  • Feel-good and romance
  • Personal development
  • Children's books
  • True stories
  • Sleep and relaxation

Nextory

Copyright © 2025 Nextory AB

Privacy Policy · Terms · Imprint ·
Excellent4.3 out of 5