Haku
Kirjaudu sisään
  • Kotisivu

  • Kategoriat

  • Äänikirjat

  • E-kirjat

  • Lapsille

  • Top listat

  • Ohje

  • Lataa sovellus

  • Käytä kampanjakoodia

  • Lunasta lahjakortti

  • Kokeile nyt ilmaiseksi
  • Kirjaudu sisään
  • Kieli

    🇫🇮 Suomi

    • FI
    • EN

    🇧🇪 Belgique

    • FR
    • EN

    🇩🇰 Danmark

    • DK
    • EN

    🇩🇪 Deutschland

    • DE
    • EN

    🇪🇸 España

    • ES
    • EN

    🇫🇷 France

    • FR
    • EN

    🇳🇱 Nederland

    • NL
    • EN

    🇳🇴 Norge

    • NO
    • EN

    🇦🇹 Österreich

    • AT
    • EN

    🇨🇭 Schweiz

    • DE
    • EN

    🇸🇪 Sverige

    • SE
    • EN
  1. Kirjat
  2. Tieto
  3. Tietokoneet ja IT

Lue ja kuuntele ilmaiseksi 42 päivää!

Peruuta milloin vain

Kokeile nyt ilmaiseksi
0.0(0)

Hands-On Reinforcement Learning with R

Implement key reinforcement learning algorithms and techniques using different R packages such as the Markov chain, MDP toolbox, contextual, and OpenAI Gym

Key Features

Explore the design principles of reinforcement learning and deep reinforcement learning models

Use dynamic programming to solve design issues related to building a self-learning system

Learn how to systematically implement reinforcement learning algorithms

Book Description

Reinforcement learning (RL) is an integral part of machine learning (ML), and is used to train algorithms. With this book, you'll learn how to implement reinforcement learning with R, exploring practical examples such as using tabular Q-learning to control robots.

You'll begin by learning the basic RL concepts, covering the agent-environment interface, Markov Decision Processes (MDPs), and policy gradient methods. You'll then use R's libraries to develop a model based on Markov chains. You will also learn how to solve a multi-armed bandit problem using various R packages. By applying dynamic programming and Monte Carlo methods, you will also find the best policy to make predictions. As you progress, you'll use Temporal Difference (TD) learning for vehicle routing problem applications. Gradually, you'll apply the concepts you've learned to real-world problems, including fraud detection in finance, and TD learning for planning activities in the healthcare sector. You'll explore deep reinforcement learning using Keras, which uses the power of neural networks to increase RL's potential. Finally, you'll discover the scope of RL and explore the challenges in building and deploying machine learning models.

By the end of this book, you'll be well-versed with RL and have the skills you need to efficiently implement it with R.

What you will learn

Understand how to use MDP to manage complex scenarios

Solve classic reinforcement learning problems such as the multi-armed bandit model

Use dynamic programming for optimal policy searching

Adopt Monte Carlo methods for prediction

Apply TD learning to search for the best path

Use tabular Q-learning to control robots

Handle environments using the OpenAI library to simulate real-world applications

Develop deep Q-learning algorithms to improve model performance

Who this book is for

This book is for anyone who wants to learn about reinforcement learning with R from scratch. A solid understanding of R and basic knowledge of machine learning are necessary to grasp the topics covered in the book.

Giuseppe Ciaburro holds a PhD in environmental technical physics, along with two master's degrees. His research was focused on machine learning applications in the study of urban sound environments. He works at the Built Environment Control Laboratory at the Università degli Studi della Campania Luigi Vanvitelli, Italy. He has over 18 years' professional experience in programming (Python, R, and MATLAB), first in the field of combustion, and then in acoustics and noise control. He has several publications to his credit.


Kirjailija:

  • Giuseppe Ciaburro

Muoto:

  • E-kirja

Kesto:

  • 332 sivut

Kieli:

englanti

Kategoriat:

  • Tieto
  • Tietokoneet ja IT

Lisää kirjoittajalta Giuseppe Ciaburro

Ohita lista
  1. MATLAB for Machine Learning

    Giuseppe Ciaburro

    book
  2. Hands-On Simulation Modeling with Python,

    Giuseppe Ciaburro

    book
  3. Keras 2.x Projects

    Giuseppe Ciaburro

    book
  4. Keras Reinforcement Learning Projects

    Giuseppe Ciaburro

    book
  5. Hands-On Data Warehousing with Azure Data Factory

    Christian Coté, Michelle Kamrat Gutzait, Giuseppe Ciaburro

    book
  6. Hands-On Machine Learning on Google Cloud Platform

    Giuseppe Ciaburro, Kishore Ayyadevara, Alexis Perrier

    book
  7. Neural Networks with R

    Giuseppe Ciaburro, Balaji Venkateswaran

    book
  8. MATLAB for Machine Learning

    Giuseppe Ciaburro

    book

Ohjeet ja yhteystiedot


Tietoa meistä

  • Tarinamme
  • Ura
  • Media
  • Saavutettavuus
  • Ryhdy kumppaniksemme
  • Sijoittajasuhteet
  • Instagram
  • Facebook

Tutki

  • Kategoriat
  • Äänikirjat
  • E-kirjat
  • Aikakauslehdet
  • Lapsille
  • Top listat

Suositut kategoriat

  • Dekkarit
  • Elämäkerrat ja reportaasit
  • Romaanit
  • Rakkaus ja feelgood
  • Hyvinvointi
  • Lastenkirjat
  • Tositarinat
  • Uni ja rentoutuminen

Nextory

Tekijänoikeus © 2025 Nextory AB

Yksityisyyden suoja · Ehdot ·
Erinomainen4.3 / 5