Haku
Kirjaudu sisään
  • Kotisivu

  • Kategoriat

  • Äänikirjat

  • E-kirjat

  • Lapsille

  • Top listat

  • Ohje

  • Lataa sovellus

  • Käytä kampanjakoodia

  • Lunasta lahjakortti

  • Kokeile nyt ilmaiseksi
  • Kirjaudu sisään
  • Kieli

    🇫🇮 Suomi

    • FI
    • EN

    🇧🇪 Belgique

    • FR
    • EN

    🇩🇰 Danmark

    • DK
    • EN

    🇩🇪 Deutschland

    • DE
    • EN

    🇪🇸 España

    • ES
    • EN

    🇫🇷 France

    • FR
    • EN

    🇳🇱 Nederland

    • NL
    • EN

    🇳🇴 Norge

    • NO
    • EN

    🇦🇹 Österreich

    • AT
    • EN

    🇨🇭 Schweiz

    • DE
    • EN

    🇸🇪 Sverige

    • SE
    • EN
  1. Kirjat
  2. Tieto
  3. Tietokoneet ja IT

Lue ja kuuntele ilmaiseksi 42 päivää!

Peruuta milloin vain

Kokeile nyt ilmaiseksi
0.0(0)

Statistical Application Development with R and Python - Second Edition

Software Implementation Illustrated with R and Python

About This Book

Learn the nature of data through software which takes the preliminary concepts right away using R and Python.

Understand data modeling and visualization to perform efficient statistical analysis with this guide.

Get well versed with techniques such as regression, clustering, classification, support vector machines and much more to learn the fundamentals of modern statistics.

Who This Book Is For

If you want to have a brief understanding of the nature of data and perform advanced statistical analysis using both R and Python, then this book is what you need. No prior knowledge is required. Aspiring data scientist, R users trying to learn Python and vice versa

What You Will Learn

Learn the nature of data through software with preliminary concepts right away in R

Read data from various sources and export the R output to other software

Perform effective data visualization with the nature of variables and rich alternative options

Do exploratory data analysis for useful first sight understanding building up to the right attitude towards effective inference

Learn statistical inference through simulation combining the classical inference and modern computational power

Delve deep into regression models such as linear and logistic for continuous and discrete regressands for forming the fundamentals of modern statistics

Introduce yourself to CART – a machine learning tool which is very useful when the data has an intrinsic nonlinearity

In Detail

Statistical Analysis involves collecting and examining data to describe the nature of data that needs to be analyzed. It helps you explore the relation of data and build models to make better decisions.

This book explores statistical concepts along with R and Python, which are well integrated from the word go. Almost every concept has an R code going with it which exemplifies the strength of R and applications. The R code and programs have been further strengthened with equivalent Python programs. Thus, you will first understand the data characteristics, descriptive statistics and the exploratory attitude, which will give you firm footing of data analysis. Statistical inference will complete the technical footing of statistical methods. Regression, linear, logistic modeling, and CART, builds the essential toolkit. This will help you complete complex problems in the real world.

You will begin with a brief understanding of the nature of data and end with modern and advanced statistical models like CART. Every step is taken with DATA and R code, and further enhanced by Python.

The data analysis journey begins with exploratory analysis, which is more than simple, descriptive, data summaries. You will then apply linear regression modeling, and end with logistic regression, CART, and spatial statistics.

By the end of this book you will be able to apply your statistical learning in major domains at work or in your projects.

Style and approach

Developing better and smarter ways to analyze data. Making better decisions/future predictions. Learn how to explore, visualize and perform statistical analysis. Better and efficient statistical and computational methods. Perform practical examples to master your learning


Kirjailija:

  • Prabhanjan Narayanachar Tattar

Muoto:

  • E-kirja

Kesto:

  • 457 sivut

Kieli:

englanti

Kategoriat:

  • Tieto
  • Tietokoneet ja IT

Lisää kirjoittajalta Prabhanjan Narayanachar Tattar

Ohita lista
  1. Hands-On Ensemble Learning with R

    Prabhanjan Narayanachar Tattar

    book

Muut ovat myös lukeneet

Ohita lista
  1. The Statistics and Machine Learning with R Workshop

    Liu Peng

    book
  2. Building Statistical Models in Python

    Huy Hoang Nguyen, Paul N Adams, Stuart J Miller

    book
  3. Introductory Statistics

    Alandra Kahl

    book
  4. Hacking Immortality: New Realities in the Quest to Live Forever

    Sputnik Futures Sputnik Futures

    book
  5. Awakening The Universal Heart : A Guide for Spiritual Activists

    Serge Beddington-Behrens

    book
  6. Spiritual Science in the 21st Century: Transforming Evil, Meeting the Other, and Awakening to the Global Initiation of Humanity

    Yeshayahu Ben-Aharon

    book
  7. Introducing Statistics : A Graphic Guide

    Eileen Magnello

    book
  8. R Statistics Cookbook

    Francisco Juretig

    book
  9. Statistics for Data Science

    James D. Miller

    book
  10. Every Day I Pray : Prayers for Awakening to the Grace of Inner Communion

    Iyanla Vanzant

    audiobookbook
  11. Love Your Enemies : Conversation with Raphael

    Gerd Steeger

    book
  12. Understanding Online Statistics

    Jeff Walker

    book

Ohjeet ja yhteystiedot


Tietoa meistä

  • Tarinamme
  • Ura
  • Media
  • Saavutettavuus
  • Ryhdy kumppaniksemme
  • Sijoittajasuhteet
  • Instagram
  • Facebook

Tutki

  • Kategoriat
  • Äänikirjat
  • E-kirjat
  • Aikakauslehdet
  • Lapsille
  • Top listat

Suositut kategoriat

  • Dekkarit
  • Elämäkerrat ja reportaasit
  • Romaanit
  • Rakkaus ja feelgood
  • Hyvinvointi
  • Lastenkirjat
  • Tositarinat
  • Uni ja rentoutuminen

Nextory

Tekijänoikeus © 2025 Nextory AB

Yksityisyyden suoja · Ehdot ·
Erinomainen4.3 / 5