En esta obra se aborda un capĂtulo de la historia de las matemáticas, haciendo Ă©nfasis en un periodo de veinte años: la Ăşltima dĂ©cada del siglo XIX y la primera del siglo XX. Particularmente se concentra la atenciĂłn en el desarrollo de la teorĂa de funciones discontinuas mediante la cual se abre la perspectiva de la teorĂa de funciones como disciplina matemática. Para ello se toma como referencia la obra del matemático francĂ©s RenĂ© Baire (1874-1932), especialmente su tesis doctoral de 1899: Sur les fonctions de variables reĂ©lles, en la cual se define su famosa clasificaciĂłn de funciones discontinuas, conocida como las clases de Baire. Se describe la manera como Baire desarrolla un dispositivo teĂłrico que permite el reconocimiento de lo discontinuo como objeto matemático. Igualmente se estudian algunos antecedentes importantes que actuaron como catalizadores y se detalla la influencia de los desarrollos de Baire, especialmente en las investigaciones del matemático, tambiĂ©n francĂ©s, Henri Lebesgue (1875-1941), sobre las funciones representables analĂticamente. Al final se detalla la controversia filosĂłfica que enfrentĂł a Baire, Borel y Lebesgue de un lado, y Hadamard, del otro, sobre el tipo de existencia de los objetos matemático.