Before Machine Learning Volume 1 - Linear Algebra for A.I : The Fundamental Mathematics for Data Science and Artificial Intelligence

In this book, you'll embark on a comprehensive journey through the fundamentals of linear algebra, a critical component for any aspiring machine learning expert. Starting with an introductory overview, the course explains why linear algebra is indispensable for machine learning, setting the stage for deeper exploration. You'll then dive into the concepts of vectors and matrices, understanding their definitions, properties, and practical applications in the field.

As you progress, the course takes a closer look at matrix decomposition, breaking down complex matrices into simpler, more manageable forms. This section emphasizes the importance of decomposition techniques in simplifying computations and enhancing data analysis. The final chapter focuses on principal component analysis, a powerful technique for dimensionality reduction that is widely used in machine learning and data science. By the end of the course, you will have a solid grasp of how PCA can be applied to streamline data and improve model performance.

This course is designed to provide technical professionals with a thorough understanding of linear algebra's role in machine learning. By the end, you'll be well-equipped with the knowledge and skills needed to apply linear algebra in practical machine learning scenarios.

Prøv 30 timer gratis

  • Les og lytt i dag
  • Ingen forpliktelser, si opp når du vil
Prøv gratis nå

Gjør hvert øyeblikk til et eventyr

  • Ha hundretusener av historier rett i lomma
  • Ingen forpliktelser, si opp når du vil
Prøv gratis nå
Smilende kvinne ser ut av et togvindu, bruker hodetelefoner og holder telefonen sin

Kom i gang med denne boken i dag for 0 kr

  • Få full tilgang til alle bøkene i appen i prøveperioden
  • Ingen forpliktelser, si opp når du vil
Prøv gratis nå
Mer enn 52 000 personer har gitt Nextory 5 stjerner på App Store og Google Play.

Relaterte kategorier