Sök
Logga in
  • Hem

  • Kategorier

  • Ljudböcker

  • E-böcker

  • Magasin

  • För barn

  • Topplistor

  • Hjälp

  • Ladda ner appen

  • Lös in kampanjkod

  • Lös in presentkort

  • Prova gratis nu
  • Logga in
  • Språk

    🇸🇪 Sverige

    • SE
    • EN

    🇧🇪 Belgique

    • FR
    • EN

    🇩🇰 Danmark

    • DK
    • EN

    🇩🇪 Deutschland

    • DE
    • EN

    🇪🇸 España

    • ES
    • EN

    🇫🇷 France

    • FR
    • EN

    🇳🇱 Nederland

    • NL
    • EN

    🇳🇴 Norge

    • NO
    • EN

    🇦🇹 Österreich

    • AT
    • EN

    🇨🇭 Schweiz

    • DE
    • EN

    🇫🇮 Suomi

    • FI
    • EN
  1. Böcker
  2. Fakta
  3. Data och IT

Läs och lyssna gratis i 42 dagar!

Avsluta när du vill

Prova gratis nu
0.0(0)

Hands-On Time Series Analysis with R

Build efficient forecasting models using traditional time series models and machine learning algorithms.

Key Features

Perform time series analysis and forecasting using R packages such as Forecast and h2o

Develop models and find patterns to create visualizations using the TSstudio and plotly packages

Master statistics and implement time-series methods using examples mentioned

Book Description

Time series analysis is the art of extracting meaningful insights from, and revealing patterns in, time series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series.

This book explores the basics of time series analysis with R and lays the foundations you need to build forecasting models. You will learn how to preprocess raw time series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data and extract meaningful information from it using both descriptive statistics and rich data visualization tools in R such as the TSstudio, plotly, and ggplot2 packages. The later section of the book delves into traditional forecasting models such as time series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also cover advanced time series regression models with machine learning algorithms such as Random Forest and Gradient Boosting Machine using the h2o package.

By the end of this book, you will have the skills needed to explore your data, identify patterns, and build a forecasting model using various traditional and machine learning methods.

What you will learn

Visualize time series data and derive better insights

Explore auto-correlation and master statistical techniques

Use time series analysis tools from the stats, TSstudio, and forecast packages

Explore and identify seasonal and correlation patterns

Work with different time series formats in R

Explore time series models such as ARIMA, Holt-Winters, and more

Evaluate high-performance forecasting solutions

Who this book is for

Hands-On Time Series Analysis with R is ideal for data analysts, data scientists, and all R developers who are looking to perform time series analysis to predict outcomes effectively. A basic knowledge of statistics is required; some knowledge in R is expected, but not mandatory.

E-bok

  • Publicerad: 2019-05-31

  • Språk: Engelska

  • Förlag: Packt Publishing

  • ISBN: 9781788624046


Författare:

  • Rami Krispin

Format:

  • E-bok

Längd:

  • 426 sidor

Språk:

Engelska

Kategorier:

  • Fakta
  • Data och IT

Hjälp och kontakt


Om oss

  • Vår historia
  • Karriär
  • Press
  • Tillgänglighet
  • Samarbeta med oss
  • För investerare
  • Instagram
  • Facebook

Utforska

  • Kategorier
  • Ljudböcker
  • E-böcker
  • Magasin
  • För barn
  • Topplistor

Populära kategorier

  • Deckare
  • Biografier och reportage
  • Romaner
  • Feelgood och romance
  • Personlig utveckling
  • Barnböcker
  • Sanna berättelser
  • Sömn och avslappning

Nextory

Copyright © 2025 Nextory AB

Integritetspolicy · Användarvillkor ·
Utmärkt4.3 av 5