Search
Log in
  • Home

  • Categories

  • Audiobooks

  • E-books

  • For kids

  • Top lists

  • Help

  • Download app

  • Use campaign code

  • Redeem gift card

  • Try free now
  • Log in
  • Language

    🇩🇪 Deutschland

    • DE
    • EN

    🇧🇪 Belgique

    • FR
    • EN

    🇩🇰 Danmark

    • DK
    • EN

    🇪🇸 España

    • ES
    • EN

    🇫🇷 France

    • FR
    • EN

    🇳🇱 Nederland

    • NL
    • EN

    🇳🇴 Norge

    • NO
    • EN

    🇦🇹 Österreich

    • AT
    • EN

    🇨🇭 Schweiz

    • DE
    • EN

    🇫🇮 Suomi

    • FI
    • EN

    🇸🇪 Sverige

    • SE
    • EN
  1. Books
  2. Nonfiction
  3. Computer sciences

Read and listen for free for 42 days!

Cancel anytime

Try free now
0.0(0)

Hands-On Time Series Analysis with R

Build efficient forecasting models using traditional time series models and machine learning algorithms.

Key Features

Perform time series analysis and forecasting using R packages such as Forecast and h2o

Develop models and find patterns to create visualizations using the TSstudio and plotly packages

Master statistics and implement time-series methods using examples mentioned

Book Description

Time series analysis is the art of extracting meaningful insights from, and revealing patterns in, time series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series.

This book explores the basics of time series analysis with R and lays the foundations you need to build forecasting models. You will learn how to preprocess raw time series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data and extract meaningful information from it using both descriptive statistics and rich data visualization tools in R such as the TSstudio, plotly, and ggplot2 packages. The later section of the book delves into traditional forecasting models such as time series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also cover advanced time series regression models with machine learning algorithms such as Random Forest and Gradient Boosting Machine using the h2o package.

By the end of this book, you will have the skills needed to explore your data, identify patterns, and build a forecasting model using various traditional and machine learning methods.

What you will learn

Visualize time series data and derive better insights

Explore auto-correlation and master statistical techniques

Use time series analysis tools from the stats, TSstudio, and forecast packages

Explore and identify seasonal and correlation patterns

Work with different time series formats in R

Explore time series models such as ARIMA, Holt-Winters, and more

Evaluate high-performance forecasting solutions

Who this book is for

Hands-On Time Series Analysis with R is ideal for data analysts, data scientists, and all R developers who are looking to perform time series analysis to predict outcomes effectively. A basic knowledge of statistics is required; some knowledge in R is expected, but not mandatory.

E-book

  • Published: 31/05/2019

  • Language: English

  • Publisher: Packt Publishing

  • ISBN: 9781788624046


Author:

  • Rami Krispin

Format:

  • E-book

Duration:

  • 426 pages

Language:

English

Categories:

  • Nonfiction
  • Computer sciences

Help and contact


About us

  • Our story
  • Career
  • Press
  • Accessibility
  • Partner with us
  • Investor relations
  • Instagram
  • Facebook

Explore

  • Categories
  • Audiobooks
  • E-books
  • Magazines
  • For kids
  • Top lists

Popular categories

  • Crime
  • Biographies and reportage
  • Fiction
  • Feel-good and romance
  • Personal development
  • Children's books
  • True stories
  • Sleep and relaxation

Nextory

Copyright © 2025 Nextory AB

Privacy Policy · Terms · Imprint ·
Excellent4.3 out of 5