L’analyse de données joue un rôle croissant dans la recherche agronomique, l’expertise scientifique et les études prospectives. Des sources de données multiples sont souvent disponibles pour estimer un paramètre clé ou pour tester une hypothèse d’intérêt scientifique ou sociétal. Ces données, obtenues dans différentes conditions environnementales ou basées sur différents protocoles expérimentaux, sont généralement hétérogènes. Parfois même, elles ne sont pas accessibles et il est nécessaire de les extraire d’articles scientifiques ou de rapports. Pourtant, une analyse globale des données disponibles est essentielle pour augmenter la précision des estimations, évaluer la robustesse des conclusions et comprendre l’origine de la variabilité de certains résultats. Une synthèse quantitative de l’ensemble des données disponibles permet de mieux comprendre les effets de facteurs expérimentaux et d’affiner les recommandations agronomiques.
Conçu comme un guide méthodologique, cet ouvrage montre les intérêts et les limites de différentes méthodes statistiques permettant d’analyser des données issues de réseaux expérimentaux et de réaliser des méta-analyses. Il s’adresse aux ingénieurs, étudiants et chercheurs impliqués dans l’analyse de données agronomiques. Notre objectif est de présenter les principales méthodes statistiques permettant de réaliser une synthèse quantitative des données issues des réseaux expérimentaux et des publications scientifiques. Chaque chapitre expose une ou plusieurs méthodes et les illustre à l’aide d’exemples traités avec le logiciel R. Les données et les codes R sont fournis et commentés afin de faciliter leur adaptation à d’autres situations pratiques. Ils peuvent être utilisés à partir du « package » R KenSyn associé à ce livre.